SD-WAN redundancy vs MPLS redundancy

SD-WAN redundancy vs MPLS redundancy

According to a recent Uptime Institute report, network failures trail only power outages as a cause of downtime. The data also suggests that full “2N” redundancy is also an excellent way to mitigate the risk of downtime. This got me thinking about a reoccurring conversation about SDWAN redundancy I have with IT managers. In one form or another the question: “how can SD-WAN deliver the same reliability and redundancy as MPLS when it uses the public Internet?” comes up. My response? SD-WAN + public Internet alone can’t. You have to have a private backbone.

Cato’s cloud-native approach to SD-WAN not only matches MPLS reliability across the middle-mile, it offers better redundancy in the last-mile. Why? MPLS provides limited active-passive redundancy in the last-mile while Cato delivers active-active redundancy and intelligent last-mile management (ILLM).

Here, we’ll compare MPLS redundancy to SD WAN redundancy and explain why active-active redundancy and ILLM are so important.

Related content: Learn more about network redundancy

MPLS redundancy: a reliable middle-mile with limited last-mile options

MPLS has a well-deserved reputation for reliability in the middle-mile. MPLS providers have a robust infrastructure capable of delivering the reliability enterprises demand from their WAN. In fact, reliability is often used as justification for the high price of MPLS bandwidth.

However, practically, the cost of MPLS circuits makes delivering the same level of reliability in the last-mile challenging. For many enterprises, the cost of MPLS connectivity simply puts redundant circuits out of reach. And without redundant circuits, sites are susceptible to last-mile outages. Tales of construction crews cutting through wires and causing downtime are well-known.

Even with redundant circuits, sites remain susceptible to carrier outages, as evidenced by last year’s CenturyLink outage. The disruption was caused by a single faulty network card. Protection against those types of failures and failures in the last mile all but requires dual-homing connections across diversely routed paths to separate providers.

Cato SD-WAN redundancy: a robust global backbone and intelligent last mile management

Cato meets enterprise-grade uptime requirements without MPLS’s high costs. Across the middle mile, our global private backbone comes with a 99.999% uptime SLA. Every Cato PoP is interconnected by multiple tier-1 carrier networks. Cato’s proprietary software stack monitors the real-time performance of every carrier, selecting the optimum path for every packet. In this way, the Cato backbone can deliver better uptime than any one of the underlying carrier networks.

Across the last-miles, Cato Sockets automatically connect to the nearest PoPs. The Sockets are designed with Affordable HA for local, inexpensive redundancy and connect across any last-mile service provider. This allows enterprises to layer in inexpensive Internet connections for resiliency affordable enough for even small locations. As opposed to being tied down to select providers or technologies, enterprises can choose the carriers and transport methods (5G, xDSL, etc.) that provide them the best mix of cost, resilience, and redundancy.

Cato’s intelligent last mile management features also enable rapid detection of network brownouts and blackouts, ensuring rapid responses and failover. Further, as Cato controls the entire global network of PoPs and the customer has self-service management capabilities, troubleshooting and responding to issues with agility is never a problem.

Active-passive redundancy vs active-active redundancy in the last-mile

What truly sets Cato’s SD-WAN redundancy apart from traditional MPLS redundancy is Cato’s ability to provide built-in active-active redundancy.

MPLS doesn’t provide active-active redundancy per se. At best, you’d configure dual paths and add a load-balancer to distribute traffic loads. Practically, MPLS last-mile redundancy has been active-passive with failover between circuits is based on route or DNS convergence. This means failover takes too long to sustain active sessions for many services like VoIP, teleconferencing, and video streaming. The result? Some level of downtime.

With Cato Cloud, active-passive redundancy is an option, but active-active redundancy is also possible. This is because our cloud-native SD-WAN software enables load-balancing for active-active link usage. As a result, last-mile “failover” is seamless. Since both transport methods are in use, packets can immediately be routed over one or the other in the event of a failure. The end result is reduced downtime and optimized application performance.

Further, Cato’s approach to active-active redundancy is also able to account for IP address changes. Select applications and policies can stop functioning. Cato’s Network Address Translation functionality obtains IP addresses from a Cato PoP as opposed to an ISP. This means that failing over between ISPs in the last-mile won’t compromise network functionality.

Cato enables true SD-WAN redundancy in the last-mile

The Uptime Institute’s data demonstrated the importance of “2N” redundancy to uptime, and Cato’s active-active redundancy brings 2N to the WAN. By coupling active-active redundancy in the last-mile with an SLA-backed private backbone, Cato Cloud is able to deliver the uptime enterprises demand.

If you’d like to learn more about how Cato’s approach to SD-WAN can improve throughput by five times and optimize WAN connectivity for brick-and-mortar locations, the cloud, and mobile users download our free WAN Optimization and Cloud Connectivity eBook. If you have specific questions about Cato’s cloud-native SD-WAN, don’t hesitate to contact us today.

FAQ zu SD-WAN

  • Was ist ein SD-WAN?

    SD-WAN-Geräte (Software-Defined Wide Area Network) befinden sich an Unternehmensstandorten und bilden ein verschlüsseltes Overlay untereinander, wobei die zugrundeliegenden Übertragungsdienste über MPLS-, LTE- und Breitbandverbindungen genutzt werden.

  • Welche Vorteile bietet die SD-WAN-Technologie?

    Geringere Kosten für die Bandbreite: MPLS-Bandbreite ist teuer. Gemessen in Euro pro Bit ist MPLS deutlich teurer als die Nutzung der öffentlichen Internetbandbreite. Die genaue Höhe der Mehrkosten hängt von verschiedenen Faktoren ab, nicht zuletzt vom Standort. Die Kosten für MPLS entstehen jedoch nicht nur durch wesentlich höhere Bandbreitengebühren. Die Bereitstellung einer MPLS-Verbindung dauert oft Wochen oder Monate, während eine vergleichbare SD-WAN-Einrichtung oft innerhalb von Tagen abgeschlossen ist. In Unternehmen ist Zeit Geld, weshalb die Beseitigung des WAN als Engpass einen entscheidenden Wettbewerbsvorteil darstellen kann.
    Ein zuverlässiges Verbindungsnetz im unzuverlässigen Internet: Es besteht die Möglichkeit, Standorte mit mehreren Datendiensten zu verbinden, die in Aktiv-Aktiv-Konfigurationen betrieben werden. Sekundenschnelle Netzwerk-Failover sorgen dafür, dass Sitzungen bei Ausfällen ohne Unterbrechung der Anwendung auf neue Übertragungswege verlagert werden.
    Sichere Kommunikation: Verschlüsselte Verbindungen schützen den Datenverkehr während des Routings auf allen Übertragungswegen.
    Bedarfsorientierte Bandbreitennutzung: Die Bandbreite lässt sich jederzeit nach oben oder unten zu skalieren, um sicherzustellen, dass kritische Anwendungen die benötigte Bandbreite dann erhalten, wenn sie sie benötigen.
    Sofortige Standortaktivierung: Die Einrichtung einer neuen Niederlassung dauert nur wenige Minuten, statt Wochen und Monate wie bei MPLS. SD-WAN-Knoten werden automatisch konfiguriert und können 4G/LTE für eine sofortige Bereitstellung nutzen.

  • Welche wichtigen Trends sprechen für die Einführung einer SD-WAN-Lösung?

    Die meisten Netzwerke in Unternehmen basieren auf veralteten Carrierservices, wie einem verwalteten MPLS-Service. Diese Services sind sehr kostenintensiv, es dauert Wochen oder sogar Monate bis zur Inbetriebnahme und auf einfache Änderungen durch den Serviceprovider muss lange gewartet werden.
    Die SD-WAN-Technologie schafft hier Abhilfe, indem sie Flexibilität und Kosteneffizienz für IT-Netzwerke bietet. Das SD-WAN verbindet Standorte über mehrere Internetverbindungen und bündelt diese durch ein verschlüsseltes Overlay. Richtlinien, anwendungsorientiertes Routing und eine dynamische Bewertung der Verbindungen im Overlay erlauben die bestmögliche Nutzung der vorhandenen Internetverbindungen.
    Letztendlich liefert ein SD-WAN die erforderlichen Leistungs- und Verfügbarkeitseigenschaften, indem es das kostengünstige öffentliche Internet mit der vom Unternehmen geforderten Sicherheit und Zuverlässigkeit nutzt.

  • Wo liegen die Grenzen eines SD-WAN?

    Fehlendes globales Backbone-Netzwerk: SD-WAN-Appliances setzen auf der zugrundeliegenden Netzwerkinfrastruktur auf. Somit kann der Bedarf an einem leistungsfähigen und zuverlässigen Backbone-Netzwerk durch SD-WAN-Appliances allein nicht gedeckt werden.
    Fehlende erweiterte Sicherheitsfunktionen: SD-WAN-Appliances helfen bei der Bewältigung vieler gängiger Netzwerkaufgaben, erfüllen jedoch nicht die Sicherheitsanforderungen. Daher müssen Unternehmen oft einen Flickenteppich von Sicherheits- und Netzwerkappliances verschiedener Anbieter (wie CASBs) verwalten, um ihre Anforderungen zu erfüllen. Dies wiederum führt zu höheren Netzwerkkosten und mehr Komplexität, da jede Appliance von der internen IT-Abteilung oder einem MSP beschafft, bereitgestellt und verwaltet werden muss.
    Keine Unterstützung für mobile Mitarbeiter: SD-WAN-Appliances wurden ursprünglich für die Verbindung verschiedener Standorte konzipiert. Die sichere Einbindung mobiler Benutzer wird von SD-WAN-Appliances nicht unterstützt.